Corrigendum to “Algebraic numbers and density modulo 1” [J. Number Theory 128 (3) (2008) 645–661]

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequences of algebraic integers and density modulo 1 par

We prove density modulo 1 of the sets of the form {μλξ + rm : n,m ∈ N}, where λ, μ ∈ R is a pair of rationally independent algebraic integers of degree d ≥ 2, satisfying some additional assumptions, ξ 6= 0, and rm is any sequence of real numbers. Roman Urban Institute of Mathematics Wroclaw University Plac Grunwaldzki 2/4 50-384 Wroclaw, Poland E-mail : [email protected] Manuscrit reçu le ...

متن کامل

Density Questions in Algebraic Number Theory

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your perso...

متن کامل

Introduction to Algebraic Number Theory

6 CONTENTS Preface This book is based on notes I created for a one-semester undergraduate course on Algebraic Number Theory, which I taught at Harvard during Spring 2004 and Spring 2005. The textbook for the first course was chapter 1 of Swinnerton-Dyer's book [SD01]. The first draft of this book followed [SD01] closely, but the current version but adding substantial text and examples to make t...

متن کامل

Corrigendum and Addendum to: Haar Bases for L2(Rn) and Algebraic Number Theory

We correct an error in the proof of Theorem 1.5 in 4]. We also give a strengthened necessary condition for the existence of a Haar basis of the speciied kind for every integer matrix A that has a given irreducible characteristic polynomial f(x) with jf(0)j = 2: A. Potiopa 7] found that the expanding polynomial g(x) = x 4 +x 2 +2 violates this necessary condition. Thus there exists some 4 4 expa...

متن کامل

Distribution of the Fibonacci numbers modulo 3

For any modulus m ≥ 2 and residue b (mod m) (we always assume 1 ≤ b ≤ m), denote by ν(m, b) the frequency of b as a residue in one period of the sequence {Fn (mod m)}. It was proved that ν(5k, b) = 4 for each b (mod 5k) and each k ≥ 1 by Niederreiter in 1972 [7]. Jacobson determined ν(2k, b) for k ≥ 1 and ν(2k5j , b) for k ≥ 5 and j ≥ 0 in 1992 [6]. Some other results in this area can be found ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2009

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2009.05.012